
ReasonAgain: Using Extractable Symbolic Programs to Evaluate
Mathematical Reasoning

Xiaodong Yu*1,3 Ben Zhou∗1,4 Hao Cheng2 Dan Roth1

1University of Pennsylvania 2Microsoft Research
3AMD 4Arizona State University

https://github.com/CogComp/reasoning-eval

Abstract

Existing math datasets evaluate the reasoning
abilities of large language models (LLMs) by
either using the final answer or the intermediate
reasoning steps derived from static examples.
However, the former approach fails to surface
model’s uses of shortcuts and wrong reason-
ing while the later poses challenges in accom-
modating alternative solutions. In this work,
we seek to use symbolic programs as a means
for automated evaluation if a model can con-
sistently produce correct final answers across
various inputs to the program. We begin by
extracting programs for popular math datasets
(GSM8K and MATH) using GPT4-o. For those
executable programs verified using the original
input-output pairs, they are found to encapsu-
late the proper reasoning required to solve the
original text questions. We then prompt GPT4-
o to generate new questions using alternative
input-output pairs based the extracted program.
We apply the resulting datasets to evaluate a
collection of LLMs. In our experiments, we ob-
serve significant accuracy drops using our pro-
posed evaluation compared with original static
examples, suggesting the fragility of math rea-
soning in state-of-the-art LLMs.

1 Introduction

Mathematical reasoning is a fundamental skill es-
sential for numerous complex applications, lead-
ing to a recent growing research effort on advanc-
ing large language models (LLMs) in this area.
Thus, proper evaluation of LLMs’ mathematical
reasoning is crucial. Most previous studies have
primarily evaluated LLMs using static datasets,
such as GSM8K (Cobbe et al., 2021) and MATH
(Hendrycks et al., 2021). Typically, evaluations
focus solely on the final answers, overlooking rea-
soning flaws (Lewkowycz et al., 2022) and poten-
tial data contamination issues. Despite impressive

*Equal Contribution. Work done when authors were PhD
students at UPenn.

results, LLMs can reply on shortcuts rather than
true reasoning, displaying high sensitivity to input
tokens (Li et al., 2024b,a). Alternatively, some
works (Sawada et al., 2023; Golovneva et al., 2023)
use model-based techniques to assess the reason-
ing quality, but these can suffer from model biases,
limiting accommodation for alternative solutions.

In this paper, we present a focused study on
evaluating mathematical reasoning which can be
concisely encapsulated by symbolic programs, i.e.,
Python programs. For such cases, we can auto-
matically generate a diverse set of new test cases
(input-output pairs) by varying the valid inputs fed
into the program. Thus, if LLMs truly employ
the appropriate reasoning process (as embodied by
the programs) to solve the original question, they
should also be able to consistently solve all new
test cases. This approach allows us to evaluate the
reasoning quality directly by examining the final
answers, without ruling out alternatives.

To avoid costly manual annotations, we use the
state-of-the-art (SoTA) LLM (GPT4-o) to gener-
ate Python programs for GSM8K and MATH. We
retain only those questions with extractable pro-
grams, which can be automatically validated for
our evaluation. This means the programs can be ex-
ecuted to produce the original gold answers. Upon
manual inspection, 92% and 83% of the programs
from GSM8K and MATH genuinely demonstrate
the correct reasoning process required to solve the
original questions. We then prompt GPT4-o to
propose alternative valid inputs based on the ex-
tracted program and the original question. These
inputs are then used to generate new input-output
pairs derived from the program. Finally, GPT4-
o is tasked to update the original question using
these proposed inputs to create new test cases for
evaluation.

Our experiments reveal significant declines in
the performance of SoTA LLMs when evaluated
on our generated data. For example, for ques-

ar
X

iv
:2

41
0.

19
05

6v
1

 [
cs

.A
I]

 2
4

O
ct

 2
02

4

https://github.com/CogComp/reasoning-eval

Answer the Question
Bobby has 16 toy cars, and the number of cars he has
increases by 50% every year. How many toy cars will Bobby
have in three years?

54.

Generate Perturbations
Generate five kinds of new parameter values.

GPT4o:
Accuracy: 100%
I know how to reason!

Generate the parameters and the Python code to solve
the question.

GPT4o:

Parameters:
 initial_num_x=16, percentage_y=50, num_years_z=3

initial_num_x=20, percentage_y=60, num_years_z=4
initial_num_x=12, percentage_y=40, num_years_z=2
initial_num_x=18, percentage_y=55, num_years_z=5
initial_num_x=22, percentage_y=45, num_years_z=3
initial_num_x=14, percentage_y=35, num_years_z=6

Rewrite the question five times to update all the parameter values.

1. Bobby has 20 toy cars, and the number of cars he has increases by 60% every year.
How many toy cars will Bobby have in four years?

2. Bobby has 12 toy cars, and the number of cars he has increases by 40% every year.
How many toy cars will Bobby have in two years?

3. Bobby has 18 toy cars, and the number of cars he has increases by 55% every year.
How many toy cars will Bobby have in five years?

4. Bobby has 22 toy cars, and the number of cars he has increases by 45% every year.
How many toy cars will Bobby have in three years?

5. Bobby has 14 toy cars, and the number of cars he has increases by 35% every year.
How many toy cars will Bobby have in six years?

Generate the new answers by running
the Python code.

answer(20, 60, 4) -> 131
answer(12, 40, 2) -> 24

answer(18, 55, 5) -> 161
answer(22, 45, 3) -> 67
answer(14, 35, 6) -> 85

Answer the question again.

GPT4o: 81, 24, 43, 35, 32. Accuracy: 20%

Encapsulate the Reasoning Process

Code:
def answer(initial_num_x: int, percentage_y: float,
num_years_z: int) -> int:
 percentage_rate_decimal = percentage_y / 100
 final_amount = initial_num_x * ((1 +
percentage_rate_decimal)**num_years_z)
 return round(final_amount)

Evaluate Perturbations

Figure 1: Pipeline of ReasonAgain, and a running example perturbed by ReasonAgain.

tions that GPT-4-turbo can answer correctly, over
half of the alternatives generated by our method
can not be properly solved. This highlights the
fragility of the mathematical reasoning capabilities
of existing LLMs. In contrast to traditional static
data evaluation methods, our proposed approach,
ReasonAgain, offers a viable solution for identi-
fying these weaknesses and providing a reliable
evaluation of reasoning abilities.

2 Methods

Assessing the reasoning capabilities of large lan-
guage models (LLMs) presents significant chal-
lenges, primarily because the reasoning process
is not consistently articulated, and standardizing
its representation is difficult. Moreover, multiple
reasoning paths may exist to arrive at the same
solution. Consequently, it is impractical to sim-
ply output the reasoning process and evaluate its
correctness directly. Typically, the accuracy of rea-
soning is assessed through question-answering for-
mats, such as verifying the accuracy of an answer
to a mathematical problem. However, this paper
contends that relying solely on a single question-
answer pair is inadequate for genuinely assessing
reasoning capabilities because: 1) an incorrect rea-
soning path may coincidentally yield the correct
answer, and 2) potential data contamination could
enable models to memorize answers without en-
gaging in a legitimate reasoning process. To ef-
fectively evaluate the reasoning abilities of LLMs,

we introduce ReasonAgain, which conceptualizes
the reasoning process within Python code and auto-
matically generates five additional perturbations of
the same question. These perturbations retain the
original reasoning process but feature different in-
put values, thereby testing whether the model gen-
uinely employs a correct reasoning process. The
pipeline of ReasonAgain is illustrated in Figure 1.

Encapsulating the reasoning process. To ex-
plicitly represent the reasoning process of a math
question, we first ask a pivot LLM (GPT-4o) to
generate the parameters of questions.

Generate Parameters of the Question

Identify numerical values in the given question, then replace some
of them with Python parameters that are either int or float, so that
the resulting abstract question is still answerable with the same
general solution as the original question. Follow the the provided
examples.

{Few-shots examples}

{Question}

Then we use the generated parameter names to
replace all the values in the question, and ask the
LLM to generate a Python function that uses the
generated parameters as the input to solve the ques-
tion.

Generate Python Function of the Question

Write a Python program to solve the given abstract math question.
Your program must contain a function called ’answer’ that accepts
the input parameters as specified in the question.

{Few-shots examples}

{Question with parameters.}

After generating Python code for all the ques-
tions, to ensure the quality of the code, we first filter
out all the code that cannot be compiled. Then we
run the code by inputting the original parameter
values, and we only keep the code that can output
the correct answer.

Generate the perturbations of the question. To
generate the perturbations of the question, we first
ask the model to generate 5 kinds of new parame-
ter values given the original parameters using the
following prompt.

Prompt for Generating Alternative Parameter Values

Here is a math question with the parameter and parameter values.
Please perturb the value of parameters into different values. Output
five kinds of new values in the same format as the given parameters
in five lines without index.

Question: {Question}

Parameters: {Parameters}

Once we obtain these new parameter values, we
prompt the model to update all values in the ques-
tion to generate the corresponding new questions.

Prompt for Generating New Questions

Here is a math question with old parameter values, and five kinds
of new parameter values. Please rewrite the question five times to
update all the parameters from old value to each corresponding new
value in five lines without index.

Question: {Question}

Old Parameters: {Parameters}

New Parameters: {New Parameters}

New Questions:

To get the answers for each new question, we run
the Python code for each set of new parameter val-
ues, and use the code’s output as the target answer.
To examine the robustness of models’ reasoning
capabilities, we then have the models answer the
new questions and compare the outputs to the target
answers.

3 Experiments

3.1 Experiment Settings

Datasets. We sample 2k questions from GSM8k
(Cobbe et al., 2021) and 1k questions from MATH

(Hendrycks et al., 2021). As discussed in Section
2, we first ask the model to generate the Python
code for each question, and then we filter out all
the problematic code that cannot be compiled or
fail to return the correct gold answer. After filter-
ing, in total, we have 1121 cases from GSM8k,
and 268 cases from MATH. For each case, we
use ReasonAgain to generate 5 perturbations as
the new test cases, which gives us 5605 cases for
GSM8k, and 1072 cases for MATH. We use GPT-
4o (OpenAI et al., 2024) as the pivot LLM to gen-
erate all the parameters, code, and perturbations.

Baselines. We evaluate 4 LLMs in this paper:
GPT-4-Turbo (OpenAI et al., 2024), GPT-4o (Ope-
nAI et al., 2024), LLama-3.1-8B (Dubey et al.,
2024), and Qwen-2.5-7B (Team, 2024) using the
following different prompting settings: direct, few-
shot Chain-of-thought (CoT) (Wei et al., 2022),
and few-shot Chain-of-thought + self-consistency
(CoT+SC) (Wang et al., 2022).
Direct: We ask the model to directly answer the
question without providing any examples using the
following prompts.

Prompt for Generating Alternative Parameter Values

Answer the math question below. Only output the answer without
units and any context words.

Question: {Question}

Answer:

Few-shot CoT: We follow the same CoT template
and the same 8-shot math examples from Wei et al.
(2022). Temperature is set to 0.
Few-shot CoT+SC: Following Wang et al. (2022),
temperature is set to 0.7, and we run each query 5
times. The majority of the outputs will be used as
the final answer.

Evaluation Metrics. We report Exact Match ac-
curacy (EM) for all the experiments. Predicted
answers are parsed by CoT format, and we round
both gold answers and predicted answers before
checking if the values are same.

3.2 Main Results

We show our main experiment results using our
proposed ReasonAgain evaluation pipeline in Ta-
ble 1. We observe a substantial performance drop
across all models on both GSM8K and MATH.
For direct inference, models experience 10%-15%
drop in performance, regardless of their size and
capabilities. The decline is not mitigated by chain-

Model Prompt
GSM8K MATH

Accu. Normalized Accu. Accu. Normalized Accu.
Before After Before After % of Correct Before After Before After % of Correct

Llama3.1-8B
Direct 21.59 7.05 100 34.27 5.39 20.88 14.30 100 32.31 9.62
CoT 88.26 69.62 100 75.31 48.63 71.49 44.02 100 54.04 33.71
CoT+SC 85.75 68.01 100 71.95 39.92 69.48 43.13 100 53.06 25.43

Qwen2.5-7B
Direct 38.44 22.20 100 42.78 13.29 35.34 19.52 100 38.41 13.64
CoT 60.04 49.48 100 63.79 30.44 38.96 25.30 100 46.19 17.53
CoT+SC 68.39 56.09 100 64.64 30.01 40.56 26.43 100 44.95 16.83

GPT4o
Direct 66.57 52.93 100 72.89 48.86 57.83 37.27 100 56.25 36.11
CoT 93.73 75.68 100 79.52 58.80 84.34 50.76 100 55.62 34.29
CoT+SC 94.44 74.87 100 78.05 55.12 82.33 50.36 100 55.41 27.80

GPT4-Turbo
Direct 45.43 35.04 100 56.13 26.63 47.39 31.16 100 45.76 22.88
CoT 54.75 43.49 100 70.02 48.12 36.14 28.19 100 61.78 42.22
CoT+SC 51.52 40.95 100 71.23 50.09 55.02 37.59 100 55.62 32.85

Table 1: Performance of LLMs on GSM8K, MATH and corresponding perturbations generated by ReasonAgain.
"Normalized Accu." refers to the performance on the subset of the test cases that the model answers correctly
before perturbation. "Before" refers to the performance on the original dataset. "After" refers to the performance on
the perturbations. "% of Correct" refers to the percentage of the cases that the model solves all the perturbations
correctly. The final metric reflects whether the evaluated LLMs truly understand the necessary reasoning.

of-thought and self-consistency inference methods,
as we observe a similar 10% to 20% drop after our
perturbation. In the normalized accuracy results,
we show that models often demonstrate a mislead-
ing impression of their performances: they only
answer 50% to 80% of the perturbed questions cor-
rectly on the questions that they initially answered
correctly. A more concerning finding is that models
only truly understand at most half of the questions,
and sometimes even less than 30%, as suggested
by the “% of Correct” results. Combining these
findings, we contend that ReasonAgain is an effec-
tive method for evaluating the true capabilities of
models in mathematical reasoning, revealing that
current models’ performances are overestimated by
previous evaluation methods solely based on static
data.

3.3 Human Evaluation

To assess whether the generated code accurately
embodies a valid reasoning process, we randomly
sample 200 cases from GSM8K and MATH (100
each), and ask three human experts to judge the
correctness of our generated perturbations. Specif-
ically, the annotators are asked to understand the
generated code, and check the correctness of the
target answers of perturbations. In summary, we
find 8 of the 100 cases from GSM8K and 17 of
the 100 cases from MATH contain errors. These
issues are mainly due to some positive parameters
being negative or the model failing to generate the
correct program that encapsulates the necessary rea-
soning process, which can be potential directions
for further improvements. Despite these errors, the

majority of our new test cases remain valid and
useful for proper evaluation purposes.

4 Related Work

Many works have discussed language model bias
and inconsistency during reasoning (Li et al.,
2024b,a; Zhou et al., 2024) and adversarial and
contrastive evaluation (Gardner et al., 2020; Patel
et al., 2021; Yu et al., 2024). Here, we provide a
novel way for automatic mathematical reasoning
evaluation by checking the reasoning reliability us-
ing alternative input-output pairs with the same text
question context. While previous studies have suc-
cessfully used decomposed methods to solve math
questions more reliably (Hao et al., 2023; Madaan
et al., 2023; Gao et al., 2023; Xia et al., 2024),
our work highlights the reasoning challenges faced
by existing LLMs. This indicates a need for more
advanced developments to further improve the relia-
bility of LLMs in mathematical reasoning. Another
related line of work (Xia et al., 2024, inter alia)
aims to surface the reasoning flaws of LLMs by
examining their intermediate steps (e.g., CoT pro-
cesses). In contrast, we bypasses the process evalu-
ation and instead evaluate whether the model truly
understand how to solve a problem by checking the
consistency of its answers using the same reason-
ing process encapsulated in a symbolic program.
We have noticed a contemporary work (Mirzadeh
et al., 2024) that also generates perturbations of
math questions to evaluate the LLMs’ mathmatical
reasoning capabilities. However, while Mirzadeh
et al. (2024) uses symbolic templates to create per-
turbations, we leverage Python code extracted by

LLMs in an automatical fashion.

5 Conclusion

In this work, we propose ReasonAgain, a novel
evaluation method to better benchmark large lan-
guage models’ true capabilities on mathemati-
cal reasoning. ReasonAgain employs a symbolic
program-based perturbation method that changes
the numerical values in the original math ques-
tions and derives the corresponding target answers.
We then evaluate models on such perturbed ques-
tions. Experiments show that representative SoTA
LLMs perform significantly worse on our modi-
fied questions, suggesting that 1) existing models
do not truly understand the reasoning process be-
hind math questions, even when they occasionally
predict the correct answer; 2) existing static data
based evaluation methods are inadequate, leading
to an overly optimistic perception of model perfor-
mances in mathematical reasoning. ReasonAgain
offers a more effective alternative for evaluating
LLMs’ reasoning capabilities.

Limitations

Our work has several limitations.

Imperfect Programs. As pointed out in §3.3,
some mistakes exist in the current generated pro-
grams, which leads to partially incorrect gold labels
in some perturbed questions. We will explore better
filtering mechanisms in later versions. However,
such mistakes do not impact our overall conclusion,
as model performances are much lower than the
upper bounds.

Limited Program Coverage. Our program gen-
eration is limited by a conceptualization pro-
cess proposed in Zhou et al. (2024), which does
not work well on certain types of math ques-
tions, such as geometry-related ones. As a result,
ReasonAgain only works on a subset of all existing
math questions.

Limited Reasoning Types. Our general formula-
tion can be applied to other reasoning types, such
as multiple-choice questions. However, we only
focus on math questions in this work.

References
Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,

Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro

Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. arXiv preprint arXiv:2110.14168.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang,
Archi Mitra, Archie Sravankumar, Artem Korenev,
Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien
Rodriguez, Austen Gregerson, Ava Spataru, Bap-
tiste Roziere, Bethany Biron, Binh Tang, Bobbie
Chern, Charlotte Caucheteux, Chaya Nayak, Chloe
Bi, Chris Marra, Chris McConnell, Christian Keller,
Christophe Touret, Chunyang Wu, Corinne Wong,
Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Al-
lonsius, Daniel Song, Danielle Pintz, Danny Livshits,
David Esiobu, Dhruv Choudhary, Dhruv Mahajan,
Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes,
Egor Lakomkin, Ehab AlBadawy, Elina Lobanova,
Emily Dinan, Eric Michael Smith, Filip Radenovic,
Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Geor-
gia Lewis Anderson, Graeme Nail, Gregoire Mi-
alon, Guan Pang, Guillem Cucurell, Hailey Nguyen,
Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan
Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan
Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, Jan
Geffert, Jana Vranes, Jason Park, Jay Mahadeokar,
Jeet Shah, Jelmer van der Linde, Jennifer Billock,
Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi,
Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu,
Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph
Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia,
Kalyan Vasuden Alwala, Kartikeya Upasani, Kate
Plawiak, Ke Li, Kenneth Heafield, Kevin Stone,
Khalid El-Arini, Krithika Iyer, Kshitiz Malik, Kuen-
ley Chiu, Kunal Bhalla, Lauren Rantala-Yeary, Lau-
rens van der Maaten, Lawrence Chen, Liang Tan, Liz
Jenkins, Louis Martin, Lovish Madaan, Lubo Malo,
Lukas Blecher, Lukas Landzaat, Luke de Oliveira,
Madeline Muzzi, Mahesh Pasupuleti, Mannat Singh,
Manohar Paluri, Marcin Kardas, Mathew Oldham,
Mathieu Rita, Maya Pavlova, Melanie Kambadur,
Mike Lewis, Min Si, Mitesh Kumar Singh, Mona
Hassan, Naman Goyal, Narjes Torabi, Nikolay Bash-
lykov, Nikolay Bogoychev, Niladri Chatterji, Olivier
Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan
Zhang, Pengwei Li, Petar Vasic, Peter Weng, Pra-
jjwal Bhargava, Pratik Dubal, Praveen Krishnan,
Punit Singh Koura, Puxin Xu, Qing He, Qingxiao
Dong, Ragavan Srinivasan, Raj Ganapathy, Ramon
Calderer, Ricardo Silveira Cabral, Robert Stojnic,
Roberta Raileanu, Rohit Girdhar, Rohit Patel, Ro-
main Sauvestre, Ronnie Polidoro, Roshan Sumbaly,
Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar
Hosseini, Sahana Chennabasappa, Sanjay Singh,
Sean Bell, Seohyun Sonia Kim, Sergey Edunov,
Shaoliang Nie, Sharan Narang, Sharath Raparthy,
Sheng Shen, Shengye Wan, Shruti Bhosale, Shun
Zhang, Simon Vandenhende, Soumya Batra, Spencer
Whitman, Sten Sootla, Stephane Collot, Suchin Gu-
rurangan, Sydney Borodinsky, Tamar Herman, Tara
Fowler, Tarek Sheasha, Thomas Georgiou, Thomas
Scialom, Tobias Speckbacher, Todor Mihaylov, Tong

Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor
Gupta, Vignesh Ramanathan, Viktor Kerkez, Vincent
Gonguet, Virginie Do, Vish Vogeti, Vladan Petro-
vic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whit-
ney Meers, Xavier Martinet, Xiaodong Wang, Xiao-
qing Ellen Tan, Xinfeng Xie, Xuchao Jia, Xuewei
Wang, Yaelle Goldschlag, Yashesh Gaur, Yasmine
Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue
Li, Yuning Mao, Zacharie Delpierre Coudert, Zheng
Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh,
Aaron Grattafiori, Abha Jain, Adam Kelsey, Adam
Shajnfeld, Adithya Gangidi, Adolfo Victoria, Ahuva
Goldstand, Ajay Menon, Ajay Sharma, Alex Boesen-
berg, Alex Vaughan, Alexei Baevski, Allie Feinstein,
Amanda Kallet, Amit Sangani, Anam Yunus, An-
drei Lupu, Andres Alvarado, Andrew Caples, An-
drew Gu, Andrew Ho, Andrew Poulton, Andrew
Ryan, Ankit Ramchandani, Annie Franco, Apara-
jita Saraf, Arkabandhu Chowdhury, Ashley Gabriel,
Ashwin Bharambe, Assaf Eisenman, Azadeh Yaz-
dan, Beau James, Ben Maurer, Benjamin Leonhardi,
Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi
Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Han-
cock, Bram Wasti, Brandon Spence, Brani Stojkovic,
Brian Gamido, Britt Montalvo, Carl Parker, Carly
Burton, Catalina Mejia, Changhan Wang, Changkyu
Kim, Chao Zhou, Chester Hu, Ching-Hsiang Chu,
Chris Cai, Chris Tindal, Christoph Feichtenhofer, Da-
mon Civin, Dana Beaty, Daniel Kreymer, Daniel Li,
Danny Wyatt, David Adkins, David Xu, Davide Tes-
tuggine, Delia David, Devi Parikh, Diana Liskovich,
Didem Foss, Dingkang Wang, Duc Le, Dustin Hol-
land, Edward Dowling, Eissa Jamil, Elaine Mont-
gomery, Eleonora Presani, Emily Hahn, Emily Wood,
Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan
Smothers, Fei Sun, Felix Kreuk, Feng Tian, Firat
Ozgenel, Francesco Caggioni, Francisco Guzmán,
Frank Kanayet, Frank Seide, Gabriela Medina Flo-
rez, Gabriella Schwarz, Gada Badeer, Georgia Swee,
Gil Halpern, Govind Thattai, Grant Herman, Grigory
Sizov, Guangyi, Zhang, Guna Lakshminarayanan,
Hamid Shojanazeri, Han Zou, Hannah Wang, Han-
wen Zha, Haroun Habeeb, Harrison Rudolph, He-
len Suk, Henry Aspegren, Hunter Goldman, Ibrahim
Damlaj, Igor Molybog, Igor Tufanov, Irina-Elena
Veliche, Itai Gat, Jake Weissman, James Geboski,
James Kohli, Japhet Asher, Jean-Baptiste Gaya,
Jeff Marcus, Jeff Tang, Jennifer Chan, Jenny Zhen,
Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong,
Jian Jin, Jingyi Yang, Joe Cummings, Jon Carvill,
Jon Shepard, Jonathan McPhie, Jonathan Torres,
Josh Ginsburg, Junjie Wang, Kai Wu, Kam Hou
U, Karan Saxena, Karthik Prasad, Kartikay Khan-
delwal, Katayoun Zand, Kathy Matosich, Kaushik
Veeraraghavan, Kelly Michelena, Keqian Li, Kun
Huang, Kunal Chawla, Kushal Lakhotia, Kyle Huang,
Lailin Chen, Lakshya Garg, Lavender A, Leandro
Silva, Lee Bell, Lei Zhang, Liangpeng Guo, Licheng
Yu, Liron Moshkovich, Luca Wehrstedt, Madian
Khabsa, Manav Avalani, Manish Bhatt, Maria Tsim-
poukelli, Martynas Mankus, Matan Hasson, Matthew
Lennie, Matthias Reso, Maxim Groshev, Maxim
Naumov, Maya Lathi, Meghan Keneally, Michael L.
Seltzer, Michal Valko, Michelle Restrepo, Mihir

Patel, Mik Vyatskov, Mikayel Samvelyan, Mike
Clark, Mike Macey, Mike Wang, Miquel Jubert Her-
moso, Mo Metanat, Mohammad Rastegari, Mun-
ish Bansal, Nandhini Santhanam, Natascha Parks,
Natasha White, Navyata Bawa, Nayan Singhal, Nick
Egebo, Nicolas Usunier, Nikolay Pavlovich Laptev,
Ning Dong, Ning Zhang, Norman Cheng, Oleg
Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem
Kalinli, Parkin Kent, Parth Parekh, Paul Saab, Pa-
van Balaji, Pedro Rittner, Philip Bontrager, Pierre
Roux, Piotr Dollar, Polina Zvyagina, Prashant Ratan-
chandani, Pritish Yuvraj, Qian Liang, Rachad Alao,
Rachel Rodriguez, Rafi Ayub, Raghotham Murthy,
Raghu Nayani, Rahul Mitra, Raymond Li, Rebekkah
Hogan, Robin Battey, Rocky Wang, Rohan Mah-
eswari, Russ Howes, Ruty Rinott, Sai Jayesh Bondu,
Samyak Datta, Sara Chugh, Sara Hunt, Sargun
Dhillon, Sasha Sidorov, Satadru Pan, Saurabh Verma,
Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lind-
say, Shaun Lindsay, Sheng Feng, Shenghao Lin,
Shengxin Cindy Zha, Shiva Shankar, Shuqiang
Zhang, Shuqiang Zhang, Sinong Wang, Sneha Agar-
wal, Soji Sajuyigbe, Soumith Chintala, Stephanie
Max, Stephen Chen, Steve Kehoe, Steve Satterfield,
Sudarshan Govindaprasad, Sumit Gupta, Sungmin
Cho, Sunny Virk, Suraj Subramanian, Sy Choudhury,
Sydney Goldman, Tal Remez, Tamar Glaser, Tamara
Best, Thilo Kohler, Thomas Robinson, Tianhe Li,
Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook
Shaked, Varun Vontimitta, Victoria Ajayi, Victoria
Montanez, Vijai Mohan, Vinay Satish Kumar, Vishal
Mangla, Vítor Albiero, Vlad Ionescu, Vlad Poenaru,
Vlad Tiberiu Mihailescu, Vladimir Ivanov, Wei Li,
Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will
Constable, Xiaocheng Tang, Xiaofang Wang, Xiao-
jian Wu, Xiaolan Wang, Xide Xia, Xilun Wu, Xinbo
Gao, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li,
Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam,
Yu, Wang, Yuchen Hao, Yundi Qian, Yuzi He, Zach
Rait, Zachary DeVito, Zef Rosnbrick, Zhaoduo Wen,
Zhenyu Yang, and Zhiwei Zhao. 2024. The llama 3
herd of models. Preprint, arXiv:2407.21783.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-
ham Neubig. 2023. Pal: Program-aided language
models. In International Conference on Machine
Learning, pages 10764–10799. PMLR.

Matt Gardner, Yoav Artzi, Victoria Basmov, Jonathan
Berant, Ben Bogin, Sihao Chen, Pradeep Dasigi,
Dheeru Dua, Yanai Elazar, Ananth Gottumukkala,
et al. 2020. Evaluating models’ local decision bound-
aries via contrast sets. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
1307–1323.

Olga Golovneva, Moya Chen, Spencer Poff, Martin
Corredor, Luke Zettlemoyer, Maryam Fazel-Zarandi,
and Asli Celikyilmaz. 2023. Roscoe: A suite of
metrics for scoring step-by-step reasoning. Preprint,
arXiv:2212.07919.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Hong, Zhen
Wang, Daisy Wang, and Zhiting Hu. 2023. Rea-

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2212.07919
https://arxiv.org/abs/2212.07919

soning with language model is planning with world
model. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing,
pages 8154–8173.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and Ja-
cob Steinhardt. 2021. Measuring mathematical prob-
lem solving with the math dataset. arXiv preprint
arXiv:2103.03874.

Aitor Lewkowycz, Anders Andreassen, David Dohan,
Ethan Dyer, Henryk Michalewski, Vinay Ramasesh,
Ambrose Slone, Cem Anil, Imanol Schlag, Theo
Gutman-Solo, Yuhuai Wu, Behnam Neyshabur, Guy
Gur-Ari, and Vedant Misra. 2022. Solving quan-
titative reasoning problems with language models.
Preprint, arXiv:2206.14858.

Bangzheng Li, Ben Zhou, Xingyu Fu, Fei Wang, Dan
Roth, and Muhao Chen. 2024a. Famicom: Further
demystifying prompts for language models with task-
agnostic performance estimation. arXiv preprint
arXiv:2406.11243.

Bangzheng Li, Ben Zhou, Fei Wang, Xingyu Fu, Dan
Roth, and Muhao Chen. 2024b. Deceptive semantic
shortcuts on reasoning chains: How far can models
go without hallucination? In Proceedings of the 2024
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies (Volume 1: Long Papers),
pages 7668–7681.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
et al. 2023. Self-refine: Iterative refinement with self-
feedback. In Thirty-seventh Conference on Neural
Information Processing Systems.

Iman Mirzadeh, Keivan Alizadeh, Hooman Shahrokhi,
Oncel Tuzel, Samy Bengio, and Mehrdad Farajtabar.
2024. Gsm-symbolic: Understanding the limitations
of mathematical reasoning in large language models.
arXiv preprint arXiv:2410.05229.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal,
Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Alt-
man, Shyamal Anadkat, Red Avila, Igor Babuschkin,
Suchir Balaji, Valerie Balcom, Paul Baltescu, Haim-
ing Bao, Mohammad Bavarian, Jeff Belgum, Ir-
wan Bello, Jake Berdine, Gabriel Bernadett-Shapiro,
Christopher Berner, Lenny Bogdonoff, Oleg Boiko,
Madelaine Boyd, Anna-Luisa Brakman, Greg Brock-
man, Tim Brooks, Miles Brundage, Kevin Button,
Trevor Cai, Rosie Campbell, Andrew Cann, Brittany
Carey, Chelsea Carlson, Rory Carmichael, Brooke
Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully
Chen, Ruby Chen, Jason Chen, Mark Chen, Ben
Chess, Chester Cho, Casey Chu, Hyung Won Chung,
Dave Cummings, Jeremiah Currier, Yunxing Dai,
Cory Decareaux, Thomas Degry, Noah Deutsch,
Damien Deville, Arka Dhar, David Dohan, Steve

Dowling, Sheila Dunning, Adrien Ecoffet, Atty Eleti,
Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix,
Simón Posada Fishman, Juston Forte, Isabella Ful-
ford, Leo Gao, Elie Georges, Christian Gibson, Vik
Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-
Lopes, Jonathan Gordon, Morgan Grafstein, Scott
Gray, Ryan Greene, Joshua Gross, Shixiang Shane
Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris,
Yuchen He, Mike Heaton, Johannes Heidecke, Chris
Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele,
Brandon Houghton, Kenny Hsu, Shengli Hu, Xin
Hu, Joost Huizinga, Shantanu Jain, Shawn Jain,
Joanne Jang, Angela Jiang, Roger Jiang, Haozhun
Jin, Denny Jin, Shino Jomoto, Billie Jonn, Hee-
woo Jun, Tomer Kaftan, Łukasz Kaiser, Ali Ka-
mali, Ingmar Kanitscheider, Nitish Shirish Keskar,
Tabarak Khan, Logan Kilpatrick, Jong Wook Kim,
Christina Kim, Yongjik Kim, Jan Hendrik Kirch-
ner, Jamie Kiros, Matt Knight, Daniel Kokotajlo,
Łukasz Kondraciuk, Andrew Kondrich, Aris Kon-
stantinidis, Kyle Kosic, Gretchen Krueger, Vishal
Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan
Leike, Jade Leung, Daniel Levy, Chak Ming Li,
Rachel Lim, Molly Lin, Stephanie Lin, Mateusz
Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue,
Anna Makanju, Kim Malfacini, Sam Manning, Todor
Markov, Yaniv Markovski, Bianca Martin, Katie
Mayer, Andrew Mayne, Bob McGrew, Scott Mayer
McKinney, Christine McLeavey, Paul McMillan,
Jake McNeil, David Medina, Aalok Mehta, Jacob
Menick, Luke Metz, Andrey Mishchenko, Pamela
Mishkin, Vinnie Monaco, Evan Morikawa, Daniel
Mossing, Tong Mu, Mira Murati, Oleg Murk, David
Mély, Ashvin Nair, Reiichiro Nakano, Rajeev Nayak,
Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh,
Long Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex
Paino, Joe Palermo, Ashley Pantuliano, Giambat-
tista Parascandolo, Joel Parish, Emy Parparita, Alex
Passos, Mikhail Pavlov, Andrew Peng, Adam Perel-
man, Filipe de Avila Belbute Peres, Michael Petrov,
Henrique Ponde de Oliveira Pinto, Michael, Poko-
rny, Michelle Pokrass, Vitchyr H. Pong, Tolly Pow-
ell, Alethea Power, Boris Power, Elizabeth Proehl,
Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh,
Cameron Raymond, Francis Real, Kendra Rimbach,
Carl Ross, Bob Rotsted, Henri Roussez, Nick Ry-
der, Mario Saltarelli, Ted Sanders, Shibani Santurkar,
Girish Sastry, Heather Schmidt, David Schnurr, John
Schulman, Daniel Selsam, Kyla Sheppard, Toki
Sherbakov, Jessica Shieh, Sarah Shoker, Pranav
Shyam, Szymon Sidor, Eric Sigler, Maddie Simens,
Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin
Sokolowsky, Yang Song, Natalie Staudacher, Fe-
lipe Petroski Such, Natalie Summers, Ilya Sutskever,
Jie Tang, Nikolas Tezak, Madeleine B. Thompson,
Phil Tillet, Amin Tootoonchian, Elizabeth Tseng,
Preston Tuggle, Nick Turley, Jerry Tworek, Juan Fe-
lipe Cerón Uribe, Andrea Vallone, Arun Vijayvergiya,
Chelsea Voss, Carroll Wainwright, Justin Jay Wang,
Alvin Wang, Ben Wang, Jonathan Ward, Jason Wei,
CJ Weinmann, Akila Welihinda, Peter Welinder, Ji-
ayi Weng, Lilian Weng, Matt Wiethoff, Dave Willner,
Clemens Winter, Samuel Wolrich, Hannah Wong,
Lauren Workman, Sherwin Wu, Jeff Wu, Michael

https://arxiv.org/abs/2206.14858
https://arxiv.org/abs/2206.14858

Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qim-
ing Yuan, Wojciech Zaremba, Rowan Zellers, Chong
Zhang, Marvin Zhang, Shengjia Zhao, Tianhao
Zheng, Juntang Zhuang, William Zhuk, and Bar-
ret Zoph. 2024. Gpt-4 technical report. Preprint,
arXiv:2303.08774.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.
2021. Are nlp models really able to solve simple
math word problems? In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 2080–2094.

Tomohiro Sawada, Daniel Paleka, Alexander Havrilla,
Pranav Tadepalli, Paula Vidas, Alexander Kranias,
John J. Nay, Kshitij Gupta, and Aran Komatsuzaki.
2023. Arb: Advanced reasoning benchmark for large
language models. Preprint, arXiv:2307.13692.

Qwen Team. 2024. Qwen2.5: A party of foundation
models.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,
Ed Chi, Sharan Narang, Aakanksha Chowdhery, and
Denny Zhou. 2022. Self-consistency improves chain
of thought reasoning in language models. arXiv
preprint arXiv:2203.11171.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824–24837.

Shijie Xia, Xuefeng Li, Yixin Liu, Tongshuang Wu,
and Pengfei Liu. 2024. Evaluating mathemati-
cal reasoning beyond accuracy. arXiv preprint
arXiv:2404.05692.

Xiaodong Yu, Hao Cheng, Xiaodong Liu, Dan Roth,
and Jianfeng Gao. 2024. ReEval: Automatic hal-
lucination evaluation for retrieval-augmented large
language models via transferable adversarial attacks.
In Findings of the Association for Computational Lin-
guistics: NAACL 2024, pages 1333–1351, Mexico
City, Mexico. Association for Computational Lin-
guistics.

Ben Zhou, Hongming Zhang, Sihao Chen, Dian Yu,
Hongwei Wang, Baolin Peng, Dan Roth, and Dong
Yu. 2024. Conceptual and unbiased reasoning in
language models. arXiv preprint arXiv:2404.00205.

https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2307.13692
https://arxiv.org/abs/2307.13692
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://doi.org/10.18653/v1/2024.findings-naacl.85
https://doi.org/10.18653/v1/2024.findings-naacl.85
https://doi.org/10.18653/v1/2024.findings-naacl.85

	Introduction
	Methods
	Experiments
	Experiment Settings
	Main Results
	Human Evaluation

	Related Work
	Conclusion

