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Abstract

Existing math datasets evaluate the reasoning
abilities of large language models (LLMs) by
either using the final answer or the intermediate
reasoning steps derived from static examples.
However, the former approach fails to surface
model’s uses of shortcuts and wrong reason-
ing while the later poses challenges in accom-
modating alternative solutions. In this work,
we seek to use symbolic programs as a means
for automated evaluation if a model can con-
sistently produce correct final answers across
various inputs to the program. We begin by
extracting programs for popular math datasets
(GSM8K and MATH) using GPT4-o. For those
executable programs verified using the original
input-output pairs, they are found to encapsu-
late the proper reasoning required to solve the
original text questions. We then prompt GPT4-
o to generate new questions using alternative
input-output pairs based the extracted program.
We apply the resulting datasets to evaluate a
collection of LLMs. In our experiments, we ob-
serve significant accuracy drops using our pro-
posed evaluation compared with original static
examples, suggesting the fragility of math rea-
soning in state-of-the-art LLMs.

1 Introduction

Mathematical reasoning is a fundamental skill es-
sential for numerous complex applications, lead-
ing to a recent growing research effort on advanc-
ing large language models (LLMs) in this area.
Thus, proper evaluation of LLMs’ mathematical
reasoning is crucial. Most previous studies have
primarily evaluated LLMs using static datasets,
such as GSM8K (Cobbe et al., 2021) and MATH
(Hendrycks et al., 2021). Typically, evaluations
focus solely on the final answers, overlooking rea-
soning flaws (Lewkowycz et al., 2022) and poten-
tial data contamination issues. Despite impressive
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results, LLMs can reply on shortcuts rather than
true reasoning, displaying high sensitivity to input
tokens (Li et al., 2024b,a). Alternatively, some
works (Sawada et al., 2023; Golovneva et al., 2023)
use model-based techniques to assess the reason-
ing quality, but these can suffer from model biases,
limiting accommodation for alternative solutions.

In this paper, we present a focused study on
evaluating mathematical reasoning which can be
concisely encapsulated by symbolic programs, i.e.,
Python programs. For such cases, we can auto-
matically generate a diverse set of new test cases
(input-output pairs) by varying the valid inputs fed
into the program. Thus, if LLMs truly employ
the appropriate reasoning process (as embodied by
the programs) to solve the original question, they
should also be able to consistently solve all new
test cases. This approach allows us to evaluate the
reasoning quality directly by examining the final
answers, without ruling out alternatives.

To avoid costly manual annotations, we use the
state-of-the-art (SoTA) LLM (GPT4-o) to gener-
ate Python programs for GSM8K and MATH. We
retain only those questions with extractable pro-
grams, which can be automatically validated for
our evaluation. This means the programs can be ex-
ecuted to produce the original gold answers. Upon
manual inspection, 92% and 83% of the programs
from GSM8K and MATH genuinely demonstrate
the correct reasoning process required to solve the
original questions. We then prompt GPT4-o to
propose alternative valid inputs based on the ex-
tracted program and the original question. These
inputs are then used to generate new input-output
pairs derived from the program. Finally, GPT4-
o is tasked to update the original question using
these proposed inputs to create new test cases for
evaluation.

Our experiments reveal significant declines in
the performance of SoTA LLMs when evaluated
on our generated data. For example, for ques-
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Answer the Question
Bobby has 16 toy cars, and the number of cars he has 
increases by 50% every year. How many toy cars will Bobby 
have in three years?

54.

Generate Perturbations
Generate five kinds of new parameter values.

GPT4o:
Accuracy: 100%
I know how to reason!

Generate the parameters and the Python code to solve 
the question.  

GPT4o:

Parameters: 
  initial_num_x=16, percentage_y=50, num_years_z=3

initial_num_x=20, percentage_y=60, num_years_z=4
initial_num_x=12, percentage_y=40, num_years_z=2
initial_num_x=18, percentage_y=55, num_years_z=5
initial_num_x=22, percentage_y=45, num_years_z=3
initial_num_x=14, percentage_y=35, num_years_z=6

Rewrite the question five times to update all the parameter values.

1. Bobby has 20 toy cars, and the number of cars he has increases by 60% every year. 
How many toy cars will Bobby have in four years?

2. Bobby has 12 toy cars, and the number of cars he has increases by 40% every year. 
How many toy cars will Bobby have in two years?

3. Bobby has 18 toy cars, and the number of cars he has increases by 55% every year. 
How many toy cars will Bobby have in five years?

4. Bobby has 22 toy cars, and the number of cars he has increases by 45% every year. 
How many toy cars will Bobby have in three years?

5. Bobby has 14 toy cars, and the number of cars he has increases by 35% every year. 
How many toy cars will Bobby have in six years?

Generate the new answers by running 
the Python code. 

answer(20, 60, 4) -> 131
answer(12, 40, 2) -> 24

answer(18, 55, 5) -> 161
answer(22, 45, 3) -> 67
answer(14, 35, 6) -> 85

Answer the question again.

GPT4o: 81, 24, 43, 35, 32. Accuracy: 20%

Encapsulate the Reasoning Process

Code:
def answer(initial_num_x: int, percentage_y: float, 
num_years_z: int) -> int:
   percentage_rate_decimal = percentage_y / 100
   final_amount = initial_num_x * ((1 + 
percentage_rate_decimal )**num_years_z)
   return round(final_amount)

Evaluate Perturbations

Figure 1: Pipeline of ReasonAgain, and a running example perturbed by ReasonAgain.

tions that GPT-4-turbo can answer correctly, over
half of the alternatives generated by our method
can not be properly solved. This highlights the
fragility of the mathematical reasoning capabilities
of existing LLMs. In contrast to traditional static
data evaluation methods, our proposed approach,
ReasonAgain, offers a viable solution for identi-
fying these weaknesses and providing a reliable
evaluation of reasoning abilities.

2 Methods

Assessing the reasoning capabilities of large lan-
guage models (LLMs) presents significant chal-
lenges, primarily because the reasoning process
is not consistently articulated, and standardizing
its representation is difficult. Moreover, multiple
reasoning paths may exist to arrive at the same
solution. Consequently, it is impractical to sim-
ply output the reasoning process and evaluate its
correctness directly. Typically, the accuracy of rea-
soning is assessed through question-answering for-
mats, such as verifying the accuracy of an answer
to a mathematical problem. However, this paper
contends that relying solely on a single question-
answer pair is inadequate for genuinely assessing
reasoning capabilities because: 1) an incorrect rea-
soning path may coincidentally yield the correct
answer, and 2) potential data contamination could
enable models to memorize answers without en-
gaging in a legitimate reasoning process. To ef-
fectively evaluate the reasoning abilities of LLMs,

we introduce ReasonAgain, which conceptualizes
the reasoning process within Python code and auto-
matically generates five additional perturbations of
the same question. These perturbations retain the
original reasoning process but feature different in-
put values, thereby testing whether the model gen-
uinely employs a correct reasoning process. The
pipeline of ReasonAgain is illustrated in Figure 1.

Encapsulating the reasoning process. To ex-
plicitly represent the reasoning process of a math
question, we first ask a pivot LLM (GPT-4o) to
generate the parameters of questions.

Generate Parameters of the Question

Identify numerical values in the given question, then replace some
of them with Python parameters that are either int or float, so that
the resulting abstract question is still answerable with the same
general solution as the original question. Follow the the provided
examples.

{Few-shots examples}

{Question}

Then we use the generated parameter names to
replace all the values in the question, and ask the
LLM to generate a Python function that uses the
generated parameters as the input to solve the ques-
tion.



Generate Python Function of the Question

Write a Python program to solve the given abstract math question.
Your program must contain a function called ’answer’ that accepts
the input parameters as specified in the question.

{Few-shots examples}

{Question with parameters.}

After generating Python code for all the ques-
tions, to ensure the quality of the code, we first filter
out all the code that cannot be compiled. Then we
run the code by inputting the original parameter
values, and we only keep the code that can output
the correct answer.

Generate the perturbations of the question. To
generate the perturbations of the question, we first
ask the model to generate 5 kinds of new parame-
ter values given the original parameters using the
following prompt.

Prompt for Generating Alternative Parameter Values

Here is a math question with the parameter and parameter values.
Please perturb the value of parameters into different values. Output
five kinds of new values in the same format as the given parameters
in five lines without index.

Question: {Question}

Parameters: {Parameters}

Once we obtain these new parameter values, we
prompt the model to update all values in the ques-
tion to generate the corresponding new questions.

Prompt for Generating New Questions

Here is a math question with old parameter values, and five kinds
of new parameter values. Please rewrite the question five times to
update all the parameters from old value to each corresponding new
value in five lines without index.

Question: {Question}

Old Parameters: {Parameters}

New Parameters: {New Parameters}

New Questions:

To get the answers for each new question, we run
the Python code for each set of new parameter val-
ues, and use the code’s output as the target answer.
To examine the robustness of models’ reasoning
capabilities, we then have the models answer the
new questions and compare the outputs to the target
answers.

3 Experiments

3.1 Experiment Settings

Datasets. We sample 2k questions from GSM8k
(Cobbe et al., 2021) and 1k questions from MATH

(Hendrycks et al., 2021). As discussed in Section
2, we first ask the model to generate the Python
code for each question, and then we filter out all
the problematic code that cannot be compiled or
fail to return the correct gold answer. After filter-
ing, in total, we have 1121 cases from GSM8k,
and 268 cases from MATH. For each case, we
use ReasonAgain to generate 5 perturbations as
the new test cases, which gives us 5605 cases for
GSM8k, and 1072 cases for MATH. We use GPT-
4o (OpenAI et al., 2024) as the pivot LLM to gen-
erate all the parameters, code, and perturbations.

Baselines. We evaluate 4 LLMs in this paper:
GPT-4-Turbo (OpenAI et al., 2024), GPT-4o (Ope-
nAI et al., 2024), LLama-3.1-8B (Dubey et al.,
2024), and Qwen-2.5-7B (Team, 2024) using the
following different prompting settings: direct, few-
shot Chain-of-thought (CoT) (Wei et al., 2022),
and few-shot Chain-of-thought + self-consistency
(CoT+SC) (Wang et al., 2022).
Direct: We ask the model to directly answer the
question without providing any examples using the
following prompts.

Prompt for Generating Alternative Parameter Values

Answer the math question below. Only output the answer without
units and any context words.

Question: {Question}

Answer:

Few-shot CoT: We follow the same CoT template
and the same 8-shot math examples from Wei et al.
(2022). Temperature is set to 0.
Few-shot CoT+SC: Following Wang et al. (2022),
temperature is set to 0.7, and we run each query 5
times. The majority of the outputs will be used as
the final answer.

Evaluation Metrics. We report Exact Match ac-
curacy (EM) for all the experiments. Predicted
answers are parsed by CoT format, and we round
both gold answers and predicted answers before
checking if the values are same.

3.2 Main Results

We show our main experiment results using our
proposed ReasonAgain evaluation pipeline in Ta-
ble 1. We observe a substantial performance drop
across all models on both GSM8K and MATH.
For direct inference, models experience 10%-15%
drop in performance, regardless of their size and
capabilities. The decline is not mitigated by chain-



Model Prompt
GSM8K MATH

Accu. Normalized Accu. Accu. Normalized Accu.
Before After Before After % of Correct Before After Before After % of Correct

Llama3.1-8B
Direct 21.59 7.05 100 34.27 5.39 20.88 14.30 100 32.31 9.62
CoT 88.26 69.62 100 75.31 48.63 71.49 44.02 100 54.04 33.71
CoT+SC 85.75 68.01 100 71.95 39.92 69.48 43.13 100 53.06 25.43

Qwen2.5-7B
Direct 38.44 22.20 100 42.78 13.29 35.34 19.52 100 38.41 13.64
CoT 60.04 49.48 100 63.79 30.44 38.96 25.30 100 46.19 17.53
CoT+SC 68.39 56.09 100 64.64 30.01 40.56 26.43 100 44.95 16.83

GPT4o
Direct 66.57 52.93 100 72.89 48.86 57.83 37.27 100 56.25 36.11
CoT 93.73 75.68 100 79.52 58.80 84.34 50.76 100 55.62 34.29
CoT+SC 94.44 74.87 100 78.05 55.12 82.33 50.36 100 55.41 27.80

GPT4-Turbo
Direct 45.43 35.04 100 56.13 26.63 47.39 31.16 100 45.76 22.88
CoT 54.75 43.49 100 70.02 48.12 36.14 28.19 100 61.78 42.22
CoT+SC 51.52 40.95 100 71.23 50.09 55.02 37.59 100 55.62 32.85

Table 1: Performance of LLMs on GSM8K, MATH and corresponding perturbations generated by ReasonAgain.
"Normalized Accu." refers to the performance on the subset of the test cases that the model answers correctly
before perturbation. "Before" refers to the performance on the original dataset. "After" refers to the performance on
the perturbations. "% of Correct" refers to the percentage of the cases that the model solves all the perturbations
correctly. The final metric reflects whether the evaluated LLMs truly understand the necessary reasoning.

of-thought and self-consistency inference methods,
as we observe a similar 10% to 20% drop after our
perturbation. In the normalized accuracy results,
we show that models often demonstrate a mislead-
ing impression of their performances: they only
answer 50% to 80% of the perturbed questions cor-
rectly on the questions that they initially answered
correctly. A more concerning finding is that models
only truly understand at most half of the questions,
and sometimes even less than 30%, as suggested
by the “% of Correct” results. Combining these
findings, we contend that ReasonAgain is an effec-
tive method for evaluating the true capabilities of
models in mathematical reasoning, revealing that
current models’ performances are overestimated by
previous evaluation methods solely based on static
data.

3.3 Human Evaluation

To assess whether the generated code accurately
embodies a valid reasoning process, we randomly
sample 200 cases from GSM8K and MATH (100
each), and ask three human experts to judge the
correctness of our generated perturbations. Specif-
ically, the annotators are asked to understand the
generated code, and check the correctness of the
target answers of perturbations. In summary, we
find 8 of the 100 cases from GSM8K and 17 of
the 100 cases from MATH contain errors. These
issues are mainly due to some positive parameters
being negative or the model failing to generate the
correct program that encapsulates the necessary rea-
soning process, which can be potential directions
for further improvements. Despite these errors, the

majority of our new test cases remain valid and
useful for proper evaluation purposes.

4 Related Work

Many works have discussed language model bias
and inconsistency during reasoning (Li et al.,
2024b,a; Zhou et al., 2024) and adversarial and
contrastive evaluation (Gardner et al., 2020; Patel
et al., 2021; Yu et al., 2024). Here, we provide a
novel way for automatic mathematical reasoning
evaluation by checking the reasoning reliability us-
ing alternative input-output pairs with the same text
question context. While previous studies have suc-
cessfully used decomposed methods to solve math
questions more reliably (Hao et al., 2023; Madaan
et al., 2023; Gao et al., 2023; Xia et al., 2024),
our work highlights the reasoning challenges faced
by existing LLMs. This indicates a need for more
advanced developments to further improve the relia-
bility of LLMs in mathematical reasoning. Another
related line of work (Xia et al., 2024, inter alia)
aims to surface the reasoning flaws of LLMs by
examining their intermediate steps (e.g., CoT pro-
cesses). In contrast, we bypasses the process evalu-
ation and instead evaluate whether the model truly
understand how to solve a problem by checking the
consistency of its answers using the same reason-
ing process encapsulated in a symbolic program.
We have noticed a contemporary work (Mirzadeh
et al., 2024) that also generates perturbations of
math questions to evaluate the LLMs’ mathmatical
reasoning capabilities. However, while Mirzadeh
et al. (2024) uses symbolic templates to create per-
turbations, we leverage Python code extracted by



LLMs in an automatical fashion.

5 Conclusion

In this work, we propose ReasonAgain, a novel
evaluation method to better benchmark large lan-
guage models’ true capabilities on mathemati-
cal reasoning. ReasonAgain employs a symbolic
program-based perturbation method that changes
the numerical values in the original math ques-
tions and derives the corresponding target answers.
We then evaluate models on such perturbed ques-
tions. Experiments show that representative SoTA
LLMs perform significantly worse on our modi-
fied questions, suggesting that 1) existing models
do not truly understand the reasoning process be-
hind math questions, even when they occasionally
predict the correct answer; 2) existing static data
based evaluation methods are inadequate, leading
to an overly optimistic perception of model perfor-
mances in mathematical reasoning. ReasonAgain
offers a more effective alternative for evaluating
LLMs’ reasoning capabilities.

Limitations

Our work has several limitations.

Imperfect Programs. As pointed out in §3.3,
some mistakes exist in the current generated pro-
grams, which leads to partially incorrect gold labels
in some perturbed questions. We will explore better
filtering mechanisms in later versions. However,
such mistakes do not impact our overall conclusion,
as model performances are much lower than the
upper bounds.

Limited Program Coverage. Our program gen-
eration is limited by a conceptualization pro-
cess proposed in Zhou et al. (2024), which does
not work well on certain types of math ques-
tions, such as geometry-related ones. As a result,
ReasonAgain only works on a subset of all existing
math questions.

Limited Reasoning Types. Our general formula-
tion can be applied to other reasoning types, such
as multiple-choice questions. However, we only
focus on math questions in this work.
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